Approximation properties of random polytopes associated with Poisson hyperplane processes

نویسندگان

  • Daniel Hug
  • Rolf Schneider
چکیده

We consider a stationary Poisson hyperplane process with given directional distribution and intensity in d-dimensional Euclidean space. Generalizing the zero cell of such a process, we fix a convex body K and consider the intersection of all closed halfspaces bounded by hyperplanes of the process and containing K. We study how well these random polytopes approximate K (measured by the Hausdorff distance) if the intensity increases, and how this approximation depends on the directional distribution in relation to properties of K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clt S for Poisson Hyperplane Tessellations

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in R d. This result generalizes an earlier one proved by Paroux [Adv. for intersection points of motion-invariant Poisson line processes in R 2. Our proof is based on Hoeffd-ing's decomposition of U-statistics which seems to be more efficient and adequate to tackle...

متن کامل

Brownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball

The paper [40] establishes an asymptotic representation for random convex polytope geometry in the unit ball Bd, d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of the so-called generalized paraboloid growth process. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via ...

متن کامل

Central Limit Theorems for Poisson Hyperplane

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in Rd . This result generalizes an earlier one proved by Paroux [Adv. in Appl. Probab. 30 (1998) 640–656] for intersection points of motion-invariant Poisson line processes in R2. Our proof is based on Hoeffding’s decomposition of U -statistics which seems to be mo...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012